МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра Безопасности жизнедеятельности

ОТЧЕТ

по лабораторной работе №19

по дисциплине «Безопасность жизнедеятельности»

Тема: "Защита от сверхвысокочастотного излучения"

Студенты гр. 1282	 Быков Д.А. Павлов К.А.
Преподаватель	 Борискина А.В

Цель лабораторной работы ознакомить студентов c характеристиками электромагнитного излучения, нормативными требованиями К электромагнитному излучению, провести измерения электромагнитного излучения СВЧ диапазона в зависимости от расстояния до источника и оценить эффективность защиты от СВЧ излучения с помощью экранов.

Основные определения.

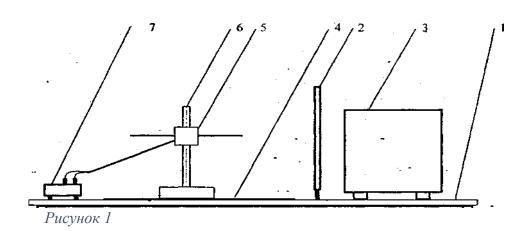
Напряжённость электрического поля (E) – это физическая величина, равная отношению силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку пространства, к величине этого заряда, В/м.

Напряжённость магнитного поля (Н) — это векторная физическая величина, равная разности вектора магнитной индукции и вектора намагниченности, А/м.

Плотность потока энергии (S) - энергия, переносимая электромагнитной волной в единицу времени через единичную площадь, B_T/m^2 .

СВЧ излучение — это сверхвысокочастотное излучение, его также называют микроволновым. Данные волны имеют длину от 1 мм до 1 м и частоту от 300 МГц до 300 ГГц (то есть от 300 миллионов Гц до 300 миллиардов Гц).

Электромагнитное поле — фундаментальное физическое поле, взаимодействующее с электрически заряженными телами, а также с телами, имеющими собственные дипольные и мультипольные электрические и магнитные моменты. Представляет собой совокупность электрического и магнитного полей, которые могут, при определённых условиях, порождать друг друга, а по сути являются одной сущностью, формализуемой через тензор электромагнитного поля.


Предельно допустимый уровень (сокращённо ПДУ) —

законодательно утверждённая верхняя граница величины уровня факторов, при воздействии которых на организм периодически или в течение всей жизни не возникает заболевания или изменений состояния здоровья, обнаруживаемых современными методами сразу или в отдаленные сроки жизни настоящего и последующих поколений.

Плотность потока энергии — физическая величина, численно равная потоку энергии через малую площадку, перпендикулярную направлению потока, делённому на площадь этой площадки.

Рисунок установки:

- 1. Столешница
- 2. Сменные экраны
- 3. Печь
- 4. Координатное устройство
- 5. Датчик
- 6. Стойка
- 7. Микроамперметр

 δ =[(I - I₉)/I] · 100% (1) где I - показание микроамперметра без экрана; I₉ - показание микроамперметра с экраном

Обработка лабораторной работы.

1.) Рассмотрим данные, полученные при измерении интенсивности излучения при постоянных координатах Y и Z и сведем их в таблицу.

Таблица 1 - Данные измерений, полученные при постоянных координатах Y и Z.

Номер	Значение	Значение	Значение	Интенсивность	Плотность
измерения	Х, см	У, см	Z, см	излучения (показания	потока,
1	,	,	Ź	микроамперметра),	мкВт/см ²
				мкА	
1		0	1.5	1.4	4.0
1	5	0	15	14	4,9
2	7,5	0	15	13	4,55
3	10	0	15	9	3,15
4	12,5	0	15	19	6,65
5	15	0	15	8	2,8
6	17,5	0	15	1	0,35
7	20	0	15	3	1,05
8	22,5	0	15	3	1,05
9	25	0	15	10	3,5
10	27,5	0	15	12	4,2
11	30	0	15	10	3,5
12	32,5	0	15	14	4,9
13	35	0	15	11	3,85
14	37,5	0	15	5	1,75
15	40	0	15	9	3,15
16	42,5	0	15	3	1,05
17	45	0	15	3	1,05
18	47,5	0	15	3	1,05
19	50	0	15	3	1,05
20	5	10	25	33	11,55
21	7,5	10	25	8	2,8
22	10	10	25	13	4,55
23	12,5	10	25	11	3,85
24	15	10	25	16	5,6
25	17,5	10	25	15	5,25
26	20	10	25	12	4,2
27	22,5	10	25	8	2,8
28	25	10	25	8	2,8
29	27,5	10	25	12	4,2
30	30	10	25	18	6,3
31	32,5	10	25	13	4,55
32	35	10	25	12	4,2
33	37,5	10	25	10	3,5
34	40	10	25	3	1,05
35	42,5	10	25	4	1,4
36	45	10	25	4	1,4
37	47,5	10	25	4	1,4
38	50	10	25	5	1,75

Сделаем графики распределения интенсивности СВЧ излучения и сравним их.

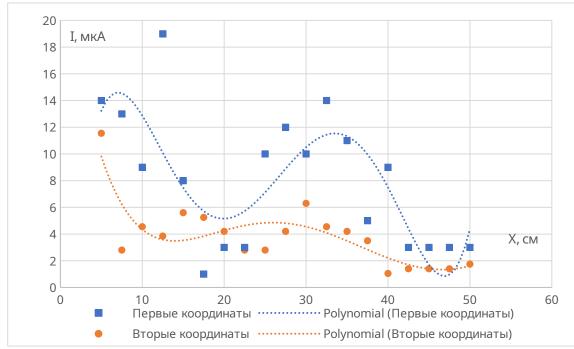


Рисунок 2 - Графики распределения интенсивности СВЧ излучения при постоянных координатах Y и Z.

Смотря на график, можно сделать вывод о том, что зависимость интенсивности излучения от расстояния от источника волн не линейная, а синусоидальная. Наибольшая интенсивность излучения наблюдалась на расстоянии 12,5 см от дверцы микроволновки.

2.) Рассмотрим данные, полученные при измерении интенсивности излучения при постоянных координатах X и Z и сведем их в таблицу.

Таблииа 2 - Ланные и	เวนอทอบแบ้	иолицации 10 к	mi noemoguii ir	roondunamar V 11 7	7
1 аолииа 2 - данные и	змерении.	полученные п	<i>ии постоянных</i>	коороинатах Λ и Z	_

Номер	Значение	Значение	Значение	Интенсивность	Плотность
измерения	Х, см	У, см	Z, см	излучения (показания	потока,
				микроамперметра),	мкВт/см ²
				мкА	
1	15	-25	15	16	5,6
2	15	-20	15	8	2,8
3	15	-15	15	11	3,85
4	15	-10	15	7	2,45
5	15	-5	15	15	5,25
6	15	0	15	4	1,4
7	15	5	15	2	0,7

8	15	10	15	4	1,4
9	15	15	15	10	3,5
10	15	20	15	15	5,25
11	15	25	15	14	4,9

Сделаем графики распределения интенсивности СВЧ излучения

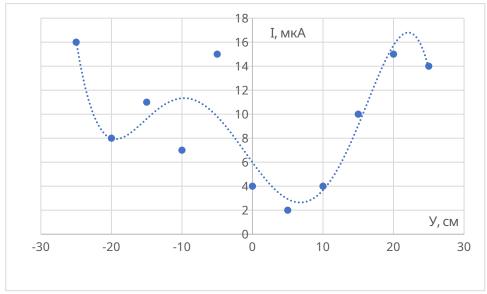


Рисунок 3 - График распределения интенсивности CBY излучения при постоянных координатах X и Z.

Из графика можно сделать вывод, что наибольшая интенсивность излучения находится не у центра двери СВЧ печи, а на расстоянии 22,5 - 25 см от центра.

3.) Рассмотрим данные, полученные при измерении эффективности экранирования и сведем их в таблицу.

Таблица 3 - Эффективность экранирования.

Номера защитных экранов	Эффективность экранирования, δ
1	0
2	84
3	84
4	32
5	72

Из таблицы можно сделать выводы: экран из сетки оцинкованной стали с ячейками 50мм не мешают СВЧ излучению проходить сквозь экран, а вот экран из того же материала, но с ячейками 10мм уже защищает намного эффективнее и почти не пропускает СВЧ излучения. Лист алюминия защищает на уровне сетки из стали с ячейками 10мм. Полистирол защищает,

но в 2.5 раза хуже, чем лист алюминия и сетки с ячейками 10мм. Резина защищает чуть хуже, чем лист алюминия, но 2 раза лучше, чем полистирол, но при этом резина стоит дешевле чем металлы, а защита чуть уступает.

Рисунок 4 - график эффективности экранов из разных материалов.

Излучение от телефона на разных углах поворота.

Исследовался телефон OnePlus 9RT, современный телефон, использующий лучшие достижения человека.

Таблица 4 - Излучение смартфона при разном угле поворота при исходящем вызове.

ϕ^0	I, мка	Плотность потока, $MKBT/CM^2$
0	5	1,75
90	1	0,35
180	2	0,7
270	3	1,05

Самое большое излучение идет от экрана матрицы, которую мы чаще держим перед собой, излучение появляется в момент срабатывания GSM модуля в процессоре и антенны, которые вынесены на боковую сторону телефона, т.к. излучение больше 1мкВт/см², то оно опасна, если продолжительность облучения больше рабочего дня, так же со стороны камер тоже излучение опасно, если облучение очень длительное, то оно опасно. Боковые излучения безвредны.

Вывод: Полученная при расчетах плотность потока энергии невелика и представляет опасность для человека, если продолжительность облучения больше рабочего дня.

Из графика 1 можно сделать вывод, что интенсивность излучения от расстояния имеет синусоидальную зависимость.

Из таблицы 3 можно сделать вывод, что самыми эффективными экранами от СВЧ излучения являются сетка из оцинкованной стали я ячейками 10 мм и лист алюминия.

Из таблицы 4 можно сделать вывод, что в телефоне GSM модуль — источник СВЧ волн, находится у матрицы ближе к левой грани смартфона. СВЧ излучение, создаваемое смартфоном, может представлять опасность при длительном воздействии.